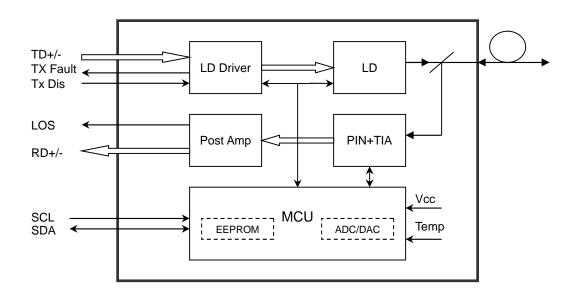


# **TRICOM 1.25Gbps COPPER SFP RJ45 100M**

### **Product Description**


The Copper Small Form Pluggable (SFP)transceivers is high performance, cost effective module compliant with the Gigabit Ethernet and 1000- BASE-T standards as specified in IEEE 802. 3-2002 and IEEE 802.3ab, which supporting 1000Mbps data- rate up to 100 meters reach over unshielded twisted-pair category 5 cable. The module supports1000 Mbps full duplex data-links with 5-level Pulse Amplitude Modulation (PAM) signals. All four pairs in the cable are used with symbol rate at 250Mbps on each pair. The module provides standard serial ID information compliant with SFP MSA, which can be accessed with address of A0h via the 2wire serial CMOS EEPROM protocol. The physical IC can also be accessed via 2wire serial bus at address A0h.

### Features

- Dual data-rate of 1.25Gbps/1.063Gbps operation
- Up to 1.25Gb/s bi-directional data links
- Hot-pluggable SFP footprint
- Extended case temperature range ( $0^{\circ}C$  to  $+70^{\circ}C$ )
- Fully metallic enclosure for low EMI
- Low power dissipation (1.05 W typical)
- Compact RJ-45 connector assembly
- Access to physical layer IC via 2-wire serial bus
- 1000 BASE-T operation in host systems with SERDES interface
- 10/100/1000Mbps compliant in host systems with SGMII interface

# Applications

- 1.25 Gigabit Ethernet over Cat 5 cable
- Gigabit Ethernet
- Fiber Channel
- Switch to Switch interface
- Switched backplane applications
- Router/Server interface
- Other optical transmission systems



## **Absolute Maximum Ratings**

### Table 1 - Absolute Maximum Ratings

| Parameter           | Symbol | Min  | Max | Unit |
|---------------------|--------|------|-----|------|
| Supply Voltage      | Vcc    | -0.5 | 4.5 | V    |
| Storage Temperature | Ts     | -40  | +85 | °C   |
| Operating Humidity  | -      | 5    | 85  | %    |

# **Recommended Operating Conditions**

| Table 2 - Recommended Operating Conditions |               |          |      |         |       |      |      |
|--------------------------------------------|---------------|----------|------|---------|-------|------|------|
| Parameter                                  |               | Symbol   | Min  | Typical | Max   | Unit |      |
| Operating<br>Temperature                   | Case          | Standard | Тс   | 0       |       | +70  | °C   |
| Power Supply Voltage                       |               | Vcc      | 3.13 | 3.3     | 3.47  | V    |      |
| Power Supp                                 | ly Current    |          | Icc  |         |       | 300  | mA   |
| Gigabit Ethernet                           |               |          |      | 1.25    |       | Chas |      |
| Data Rate                                  | Fiber Channel |          |      |         | 1.063 |      | Gbps |

### **Table 2 - Recommended Operating Conditions**

# **Optical and Electrical Characteristics**

### (FP and PIN, 1310nm, 20km Reach)

### **Table 3 - Optical and Electrical Characteristics**

| Para     | meter                   | Symbol | Min  | Typical | Max  | Unit    | Notes |  |
|----------|-------------------------|--------|------|---------|------|---------|-------|--|
|          | Transmitter             |        |      |         |      |         |       |  |
| Centre   | Wavelength              | c      | 1260 | 1310    | 1360 | nm      |       |  |
| Spectral | Width (RMS)             |        |      |         | 4    | nm      |       |  |
| Average  | Output Power            | Pout   | -9   |         | -3   | dB<br>m | 1     |  |
| Extino   | ction Ratio             | ER     | 9    |         |      | dB      |       |  |
| -        | Rise/Fall Time<br>~80%) | tr/tf  |      |         | 0.26 | ns      |       |  |
|          | nput Swing<br>erential  | VIN    | 400  |         | 1800 | m<br>V  | 2     |  |
| -        | Differential edance     | ZIN    | 90   | 100     | 110  |         |       |  |
| ТХ       | Disable                 |        | 2.0  |         | Vcc  | V       |       |  |
| Disable  | Enable                  |        | 0    |         | 0.8  | V       |       |  |
| TX Fault | Fault                   |        | 2.0  |         | Vcc  | V       |       |  |

|         | Normal                  |      | 0      |     | 0.8  | V       |   |
|---------|-------------------------|------|--------|-----|------|---------|---|
|         |                         |      | Receiv | er  |      |         |   |
| Centre  | Wavelength              | с    | 1480   |     | 1580 | nm      |   |
| Receive | er Sensitivity          |      |        |     | -23  | dB      | 3 |
|         |                         |      |        |     |      | m<br>dB |   |
| Receiv  | er Overload             |      | -3     |     |      | m       | 3 |
| LOS     | De-Assert               | LOSD |        |     | -24  | dB      |   |
|         | 2 • 1 155 • 11          | 2002 |        |     |      | m       |   |
| LO      | S Assert                | LOSA | -30    |     |      | dB      |   |
|         |                         |      |        |     |      | m       |   |
| LOS     | Hysteresis              |      | 1      |     | 4    | dB      |   |
|         | utput Swing<br>erential | Vout | 400    |     | 1800 | m<br>V  | 4 |
| LOC     | High                    | 2.0  |        | Vcc | V    |         |   |
|         | LOS                     | Low  |        |     | 0.8  | V       |   |

#### Notes:

1. The optical power is launched into SMF.

2. PECL input, internally AC-coupled and terminated.

3. Measured with a PRBS 27-1 test pattern @1250Mbps, BER 1×10-12.

4. Internally AC-coupled.

# **Timing and Electrical**

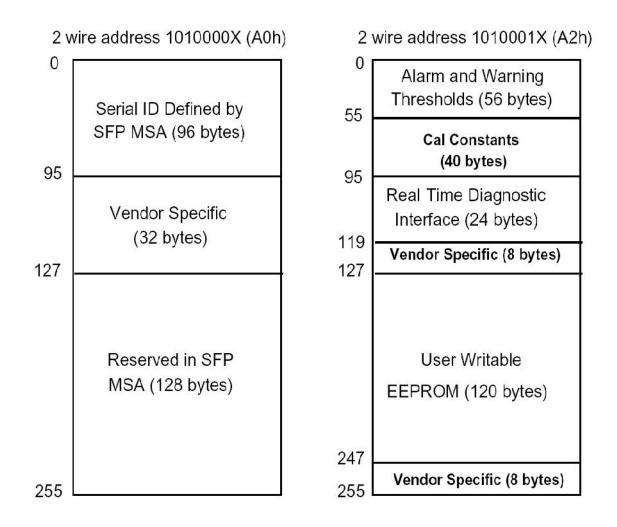
### Table 4 - Timing and Electrical

| Parameter                                          | Symbol     | Min | Typical | Max | Unit |
|----------------------------------------------------|------------|-----|---------|-----|------|
| Tx Disable Negate Time                             | t_on       |     |         | 1   | ms   |
| Tx Disable Assert Time                             | t_off      |     |         | 10  | μs   |
| Time To Initialize, including Reset<br>of Tx Fault | t_init     |     |         | 300 | ms   |
| Tx Fault Assert Time                               | t_fault    |     |         | 100 | μs   |
| Tx Disable To Reset                                | t_reset    | 10  |         |     | μs   |
| LOS Assert Time                                    | t_loss_on  |     |         | 100 | μs   |
| LOS De-assert Time                                 | t_loss_off |     |         | 100 | μs   |

| Serial ID Clock Rate | f_serial_c<br>lock |   | 400 | KHz |
|----------------------|--------------------|---|-----|-----|
| MOD_DEF (0:2)-High   | VH                 | 2 | Vcc | V   |
| MOD_DEF (0:2)-Low    | VL                 |   | 0.8 | V   |

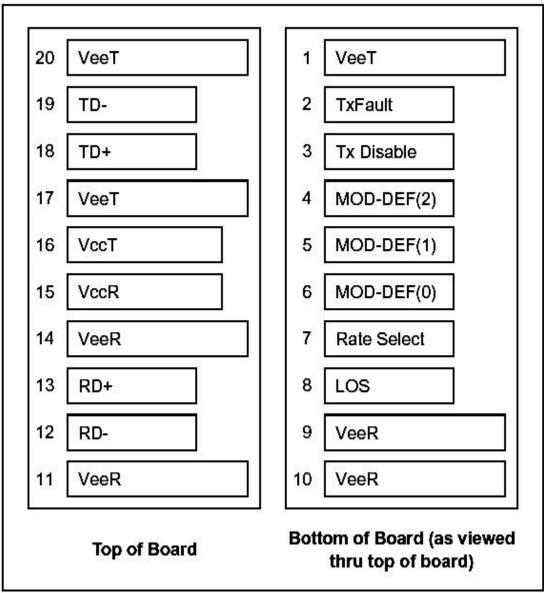
## **Diagnostics**

 Table 5 – Diagnostics Specification


| Parameter    | Range      | Unit | Accuracy | Calibration         |
|--------------|------------|------|----------|---------------------|
| Temperature  | 0 to +70   | °C   | ±3°C     | Internal / External |
| Voltage      | 3.0 to 3.6 | V    | ±3%      | Internal / External |
| Bias Current | 0 to 100   | mA   | ±10%     | Internal / External |
| TX Power     | -9 to 0    | dBm  | ±3dB     | Internal / External |
| RX Power     | -23 to -3  | dBm  | ±3dB     | Internal / External |

#### **Digital Diagnostic Memory Map**

The transceivers provide serial ID memory contents and diagnostic information about the present operating conditions by the 2-wire serial interface (SCL, SDA).


The diagnostic information with internal calibration or external calibration all are implemented, including received power monitoring, transmitted power monitoring, bias current monitoring, supply voltage monitoring and temperature monitoring.

The digital diagnostic memory map specific data field defines as following.



### **Pin Definitions**

Pin Diagram



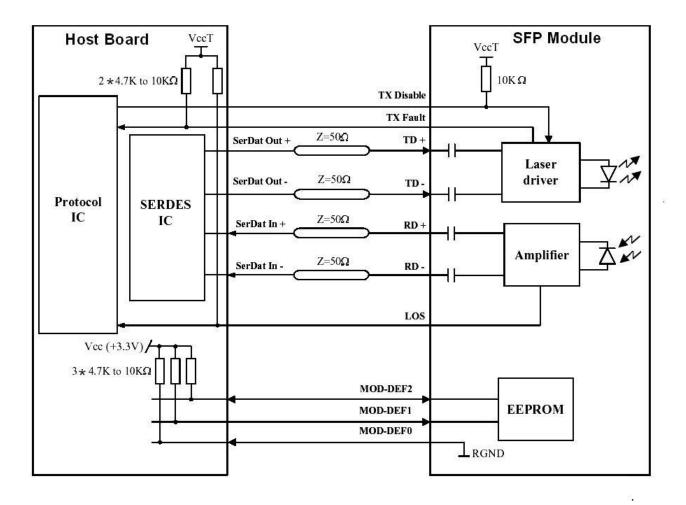
#### **Pin Descriptions**

| Pin | Signal Name       | Description                  | Plug Seq. | Notes  |
|-----|-------------------|------------------------------|-----------|--------|
| 1   | VEET              | Transmitter Ground           | 1         |        |
| 2   | TX FAULT          | Transmitter Fault Indication | 3         | Note 1 |
| 3   | <b>TX DISABLE</b> | Transmitter Disable          | 3         | Note 2 |
| 4   | MOD_DEF(2)        | SDA Serial Data Signal       | 3         | Note 3 |
| 5   | MOD_DEF(1)        | SCL Serial Clock Signal      | 3         | Note 3 |
| 6   | MOD_DEF(0)        | TTL Low                      | 3         | Note 3 |
| 7   | Rate Select       | Not Connected                | 3         |        |
| 8   | LOS               | Loss of Signal               | 3         | Note 4 |
| 9   | VEER              | Receiver ground              | 1         |        |
| 10  | VEER              | Receiver ground              | 1         |        |
| 11  | VEER              | Receiver ground              | 1         |        |
| 12  | RD-               | Inv. Received Data Out       | 3         | Note 5 |
| 13  | RD+               | Received Data Out            | 3         | Note 5 |
| 14  | V <sub>EER</sub>  | Receiver ground              | 1         |        |
| 15  | V <sub>CCR</sub>  | <b>Receiver Power Supply</b> | 2         |        |
| 16  | V <sub>CCT</sub>  | Transmitter Power Supply     | 2         |        |
| 17  | V <sub>EET</sub>  | Transmitter Ground           | 1         |        |
| 18  | TD+               | Transmit Data In             | 3         | Note 6 |
| 19  | TD-               | Inv. Transmit Data In        | 3         | Note 6 |
| 20  | VEET              | Transmitter Ground           | 1         |        |

#### Notes:

Plug Seq.: Pin engagement sequence during hot plugging.

- 1) TX Fault is an open collector output, which should be pulled up with a 4.7k~10k resistor on the host board to a voltage between 2.0V and Vcc+0.3V. Logic 0 indicates normal operation; Logic 1 indicates a laser fault of some kind. In the low state, the output will be pulled to less than 0.8V.
- 2) TX Disable is an input that is used to shut down the transmitter optical output. It is pulled up within the module with a 4.7k~10k resistor. Its states are:


| Low (0 to 0.8V):      | Transmitter on       |
|-----------------------|----------------------|
| (>0.8V, < 2.0V):      | Undefined            |
| High (2.0 to 3.465V): | Transmitter Disabled |
| Open:                 | Transmitter Disabled |

- 3) Mod-Def 0,1,2. These are the module definition pins. They should be pulled up with a 4.7k~10k resistor on the host board. The pull-up voltage shall be VccT or VccR.
  Mod-Def 0 is grounded by the module to indicate that the module is present
  Mod-Def 1 is the clock line of two wire serial interface for serial ID
  Mod-Def 2 is the data line of two wire serial interface for serial ID
- 4) LOS is an open collector output, which should be pulled up with a 4.7k~10k resistor. Pull up voltage between 2.0V and Vcc+0.3V. Logic 1 indicates loss of signal; Logic 0 indicates normal

operation. In the low state, the output will be pulled to less than 0.8V.

- 5) RD-/+: These are the differential receiver outputs. They are internally AC-coupled 100 differential lines which should be terminated with 100 (differential) at the user SERDES.
- 6) TD-/+: These are the differential transmitter inputs. They are internally AC-coupled, differential lines with 100 differential termination inside the module.

#### **Recommended Interface Circuit**



μ.